elliptic-curve cryptography - перевод на Английский
Diclib.com
Словарь ChatGPT
Введите слово или словосочетание на любом языке 👆
Язык:

Перевод и анализ слов искусственным интеллектом ChatGPT

На этой странице Вы можете получить подробный анализ слова или словосочетания, произведенный с помощью лучшей на сегодняшний день технологии искусственного интеллекта:

  • как употребляется слово
  • частота употребления
  • используется оно чаще в устной или письменной речи
  • варианты перевода слова
  • примеры употребления (несколько фраз с переводом)
  • этимология

elliptic-curve cryptography - перевод на Английский

APPROACH TO PUBLIC-KEY CRYPTOGRAPHY BASED ON THE ALGEBRAIC STRUCTURE OF ELLIPTIC CURVES OVER FINITE FIELDS
Elliptical Curve Cryptography; Elliptic Curve Cryptography; Elliptical curve cryptography; Elliptic curve discrete logarithm problem; ECDLP; Elliptic curve cryptography (ECC); Parabolic encryption; Parabolic cryptography; ECC Brainpool; Elliptic-curve discrete logarithm problem; Elliptic Curve Discrete Logarithm Problem; Elliptic curve cryptography; P-224; P-256; P-521; NIST Curve; NIST Curves; NIST P-256; NIST P-224; NIST P-521; NIST Elliptic-curve; NIST Elliptic-curves; ECC Curves; ECC Curve

elliptic-curve cryptography         

общая лексика

ECC

шифрование в эллиптических кривых, криптография на эллиптических кривых

быстро развивающееся направление асимметричного шифрования и ЭЦП. В ECC все вычисления производятся над точками эллиптической кривой, т.е., вместо обычного сложения двух чисел выполняется по определенным правилам сложение двух точек кривой, при этом в качестве результата получается третья точка

Смотрите также

cryptography

elliptic curve         
  • Set of affine points of elliptic curve ''y''<sup>2</sup> = ''x''<sup>3</sup> − ''x'' over finite field '''F'''<sub>61</sub>.
  • Set of affine points of elliptic curve ''y''<sup>2</sup> = ''x''<sup>3</sup> − ''x'' over finite field '''F'''<sub>71</sub>.
  • Set of affine points of elliptic curve ''y''<sup>2</sup> = ''x''<sup>3</sup> − ''x'' over finite field '''F'''<sub>89</sub>.
AN ALGEBRAIC CURVE OF GENUS 1 EQUIPPED WITH A BASEPOINT
Elliptical curve; Elliptic curves; Weierstrass form; Elliptic Equation; Weierstrass equation; Elliptic Curve; Elliptic Curves; Eliptic curve; Discriminant of an elliptic curve; Weierstrass normal form

математика

эллиптическая кривая

public key cryptography         
  • digitally signed]] with Alice's private key, but the message itself is not encrypted.
1) Alice signs a message with her private key.
2) Using Alice's public key, Bob can verify that Alice sent the message and that the message has not been modified.
  • In an asymmetric key encryption scheme, anyone can encrypt messages using a public key, but only the holder of the paired private key can decrypt such a message. The security of the system depends on the secrecy of the private key, which must not become known to any other.
  • symmetric cipher]] which will be, in essentially all cases, much faster.
CRYPTOSYSTEM THAT USES BOTH PUBLIC AND PRIVATE KEYS
Private key; Asymmetric key algorithm; Public key algorithm; Public key; Public key cryptography; Asymmetric key cryptography; Public key encyption; Public key crytography; Asymmetric key; Asymmetric key encryption algorithm; Public key encryption; Public-key encryption; Public-key; Asymmetric key encryption; Asymmetric cryptography; Non-secret encryption; Asymmetric key algorithms; Asymmetric encryption; Keypair cryptography; Public Key Cryptography; Private key encryption; Public-key cryptosystem; Public key cryptosystem; Assymetric key cryptography; PubKey; Asymmetric-key cryptography; Asynchronous encryption; Public/private key cryptography; Asymmetric-key algorithm; Key pair; Keypair; Key Pair; Asymmetric crypto; Public encryption key; Asymmetric cryptosystem; Asymmetric cypher; Asymmetric cipher; Asymmetric algorithm; Asymmetric Algorithms; Public Key Encryption; Private Key Encryption; Secret-key; Key pairs; Asymmetric-key cryptosystem; Public key pair; Public-key encrytption; Asymmetrical encryption; Private keys; Applications of public-key cryptography
криптография с открытым ключом, двухключевая криптография, криптография множественного доступа

Определение

Bezier curve
<graphics> A type of curve defined by mathematical formulae, used in computer graphics. A curve with coordinates P(u), where u varies from 0 at one end of the curve to 1 at the other, is defined by a set of n+1 "control points" (X(i), Y(i), Z(i)) for i = 0 to n. P(u) = Sum i=0..n [(X(i), Y(i), Z(i)) * B(i, n, u)] B(i, n, u) = C(n, i) * u^i * (1-u)^(n-i) C(n, i) = n!/i!/(n-i)! A Bezier curve (or surface) is defined by its control points, which makes it invariant under any affine mapping (translation, rotation, parallel projection), and thus even under a change in the axis system. You need only to transform the control points and then compute the new curve. The control polygon defined by the points is itself affine invariant. Bezier curves also have the variation-diminishing property. This makes them easier to split compared to other types of curve such as Hermite or B-spline. Other important properties are multiple values, global and local control, versatility, and order of continuity. [What do these properties mean?] (1996-06-12)

Википедия

Elliptic-curve cryptography

Elliptic-curve cryptography (ECC) is an approach to public-key cryptography based on the algebraic structure of elliptic curves over finite fields. ECC allows smaller keys compared to non-EC cryptography (based on plain Galois fields) to provide equivalent security.

Elliptic curves are applicable for key agreement, digital signatures, pseudo-random generators and other tasks. Indirectly, they can be used for encryption by combining the key agreement with a symmetric encryption scheme. Elliptic curves are also used in several integer factorization algorithms based on elliptic curves that have applications in cryptography, such as Lenstra elliptic-curve factorization.

Как переводится elliptic-curve cryptography на Русский язык